

Discover Nedap University, our post-master program for
code-loving changemakers!

During one-and-a-half year you will work within one of our business
units, developing software together with your team, and follow
lectures with other Nedap University participants at the University of
Twente, to acquire necessary theoretical knowledge.

Once you’ve completed Nedap University, you’ll be a high-end
software developer ready to create Technology For Life.

Check www.nedap.com/university for more information

Ready to put
theory into
practice?

Colophon

Address:
T.F.V. ‘Professor Francken’
o/c Francken Vrij
Nijenborgh 4
9747 AG Groningen
The Netherlands
Telephone number: 050 363 4978
E-mail: franckenvrij@professorfrancken.nl

Editor in chief
Sibren Wobben

Editorial board
Amy Kerdijk
Alexandra Meerovici
Ian Soede
Leon Trustram
Emiel de Wit

Senior Editor
Sjoukje de Jong

Special thanks to:
Jelle Bor, Antonija Grubišić Čabo, Luc Cro-
nin, Nea Isla Kauko, Jasper Pluimers, Gertjan
Pomstra, Petra Rudolf, Robbert Scholtens, and
Bradley Spronk

Editorial
For this edition we’v come up with a vry ex-

citing theme, exact! I̶t̵ ̵w̵a̵s̸ ̶’e̷x̶a̶c̷t̷l̶y’̷ ̸f̸i̸v̸e̸ ̴y̶e̸a̸r̷s̵
̶a̴g̸o̶ ̴t̶h̴a̵t̸ ̴I̵ ̶s̸t̸a̵r̴t̷e̷d̵ ̷w̸o ̴r̶k̷i̷n̷g̶ ̸o̶n̴ ̴m̸y̴ ̸f̶r̸s̴t̴ F̷̃ ̢ŕ̷̲ a̴̞̍ n̶̞̎ c̸͒ ͖ k̴͖̇ e̴̟̊ n̷̯͊ ̷͍̓V̵͙̾ r̵̞̓ į̵̀ j̴̲͑ ̵̻̇a̴͝ ̝ n̵̡͘d̸͖́
̴͍͛j̵͔̓ s̷̜̔ t̷̼̕ ̴̲̕b̴̻̈́ é̷͇ ć̷̤ a̵̼̽ ũ̸̮ s̴͆ ̢e̸͍͊ ̵̙̕o̶̪̽ f̵̦͌ ̷̯͋t̴̞͐ h̸͠ ͇ à̵̘ t̴ ̯̉ ̸̰̅Ḯ̷͈ ̶̹͠t̷͈͊ ḧ̵͙ ő̶͓ ű̵͖ g̴̩̍ h̴͝ ̙ t̸̰̽ ̵̦̈t̵͓̓ h̸͎̽ i̷͙̓ ś̷̡ ̷͖̓ẅ̸̺ ō̸̲ ṷ̷͊ l̷̤̉ ḋ̸ ̧ ̸̼́b̶̏ ẹ̶̱́ ̴̗̈́t̸͛͊ ̕̕ͅ ̹͇͇

h̴̊̈ ̗ ë̵́ ̳̃͜ ̵̓̊͆ ̡͓p̸͋̆ ̋
̇
̤̥ ̡̠ é̶̅ ̨̞̮̾͘r̶͠ ̯̦͇ f̶

͋͜ ̨ ̳͜ ë̷͙̗́̐ ͍̙ c̷̄̑ ṭ̷̈̊ ̦ ̶͎̝͙̂o̵̺͠ ̮̍͑͌ p̶̽͌ ͅ ͍̙͉
p̸̱̪̼̞̾
o̷͂̆ ̡r̵͈̳̓͑ t̸͊̍

͐ ̧ u̸͌͋
̔̐
͔̤̲ n̵̄̐͋ ̞̕ ͅ i̴͗͊ ̄ ̧͓͔ t̴̒ ̀

̎ ̲̻̀

y̴ ̟̀̕ ͅ ̵̨̹̙͛t̸̄ ̣̖̗ o̷͗̂̔
͒
̪͓ ̡ ̸̛̭̰̏ ̣s̵̼ ͈̃ ̶͗ ̮̉t̷̋͂

̑ ̰̠̭̱̋ h̴̐ ̫ ̣̼̭ t̶
̂̒͆ ̩͇̦̕ ̷͊͝
̏ ̧͙̕͜t̸̏ ͗̾ ̠̕ ̫̦ h̷͊̎

̍ ̈́
̺ m̵̬̪̋͊͠ ȩ̴́̆͋ ̞ .̸̟̙̩͉́̅͆ ̵̟̻͙̊T̷̨̛ ̳ h̸̖͉̋̍ ͍̳ ̷̀̿

̯̙̆̆ ̺ ̧r̷
͝ ̫ ̫ ̘ s̷̙̜̈́̎ t̶͋

̭̇ ̨̬ ̷͐͠ ̼́f̵͍̒ ̧̙̩ ̵̢̩̖̔͜t̸͔̻̰̋ h̶̉̊
̌͐
͉̤̠ s̶͇̈́ ̨ ̸͑͛̾

̽
͖p̸̻͋̂ c̴̛̊̓ ̝̩ e̵͒ ̛̋

̈́ ̡̭ ̹ ̷̪͚͖̬͑s̴̐̆͝ ͑ ̪̪̪ ̴̯̄j̶̯̈́ ̢̟ ̢ş̶̺͉̰̀ t̷̊ ̳̼̱̗̀ ̸͙͂͘h̵̓̓
̚
͖̗͇ ̷̣́̕
̋ ͚̳n̷͛ͅ ͗ ̘ ̣̦̻ ̴̂

̏ ̘̟ŵ̷ ͚̃̽ l̵̓ ̫̈́ l̴̇̈ ̘̰̰ ̶̌ ̈́
̫̠̋͜v̴͝ ̳̮ r̵̂̿

͔̲͕̓ ͍ ̶͊
͊ ̲̋̆r̵ ́ ̮́̀ ̹ d̶̄ ͕̥̉͜ ̫ ̵͉̱͗t̶̹̼̠̬̅ h̵̛̀ ̛

̑ ͕̗ s̴͊ ̯̲̋͘ ̣ ̴̤̇͛͂ ̬̇ ͅṉ̵͉̓ y̵͝ ͖͊ ͅ ̢w̶͙̜̄̎ ̫͇ y̴̐̇ ̥͔́ s̴̈́ ̉͂ ̗͖͚̟̅ .̸̛͋
̯̩͐͆.̶̏͝ ͓̂̿ ͍͜.̷̦͙̰̖̏ ̸̢͖̭̀...........

Sorry for that, exact was of course the theme
of last edition, weird... You might have noticed
some things different for this edition. The theme
of this edition is ‘error’, and I think the Francken
Vrij keeps glitching out... Are all these mistakes
intentional? Or was I just lazy and for once didn’t
want to do a whole lot of proof reading, who
knows? We still hope you’ll enjoy!

General:
Advertisers
Nedap2, Schut28

ISSN:
2213-4840 (print)
2213-4859 (online)
Edition and circulation:
June 2022, 100

26.2 Edition

6 President’s Preface
Ian Soede
Also this edition Ian opens the Francken
Vrij. Read all about his own interpretation
of the Heisenberg uncertainty principle.

7 News of the
Association
Sjoukje de Jong
The pandamic has been over for a while
and because of this we’ve had quite some
activities.

12 Life after Francken
Jasper Pluimers
Former editor in chief and theorist of the
Francken Vrij, Jasper, has been working at
works at Nedap for a while. Find out what
he has been up to.

10 Errors that every 16 Comic
Bradley Spronk
Over the past couple of editions Bradley
has provided us with a lot of comics. This is
most certainly his most elaborate one yet.
Go to page 16 to see it for yourself.

Physicist should like
Jelle Bor
Whether from coding or experiments, ev-
ery physicist has to deal with a range of er-
rors. Jelle tells us about some of his favorites
and how to handle them.

20
Antonija Grubišić Čabo and Petra Rudolf
Real materials are rarely perfect; they pretty
much always have some kinds of defects in the
lattice. But this is not necessarily a bad thing! In
this inside view, Antonija Grubišić Čabo and Pe-
tra Rudolf discuss some interesting properies of
defects in lower-dimensional structures.

18
Robbert Scholtens
For this edition we’ve exchanged articles with
the FMF’s periodiek. For his piece Robbert has
writen about the coding theory to detect and
correct errors.

26.2 Edition

24 Puzzle
Gertjan Pomstra
As of writing this, one of our editors accidentally
broke the real coffee machine at Francken. So, if
you are able to solve this puzzle please contact
the board, since we desperately need someone
to repair the real one.

27 It’s all in your
head!
Nea Isla Kauko & Luc Cronin
Since they encounter errors on a daily basis,
we’ve contacted some members from Cover to
tell about a particular error they’ve once found. If
you ever have to write some code, and it doesn’t
compile, stop crying and try this solution.

By Ian Soede

Chair’s
Preface

Chair’s preface

6

In my opinion, one of the most surpri-
sing facts of nature is that there are some

quantities we can never know exactly. Es-
pecially on the most fundamental level,
according to Heisenbergs uncertainty re-
lation, we can very well know how badly
we know things according to the size of our
system. Somehow it seems there always is
some uncertainty, a margin of unknown, an
error. The error does not prevent physi-
cists from doing physics, a lot of informa-
tion is hidden in where something might be
and what momentum it might have.

From what I have learned over the past
year, this also applies to Franckenmembers.
The uncertainty in the amount of alcohol a
group of Franckenmembers has consumed
multiplied by the uncertainty in how much
of a mess they’ll make during the evening,

must be greater than or equal to 37 (which
follows from obvious reasons):

Now you might think, we can know exactly
how much someone has drunk right? That
might seem the case, but you never know
whether the board has invited them for a
‘leermoment’ or whether the G13 beer did
exactly contain 5,9% alcohol. And if you are
quite sure how much alcohol was consu-
med by a Franckenmember, you have paid
too much attention to one person and can-
not also be sure what shenanigans the rest
have done. It is a fundamental and inescapa-
ble error in managing Franckenmembers,
and one that is only experimentally found
when it is too late.

∆Valc∆Nmess ≥ 37

By Sjoukje de Jong

News of the
association

News of the association

7Francken Vrij 26.2

After there was a full lockdown again,
it was now time to fully open up eve-

rything. Our room is now open for all pos-
sible events, which might not be better for
my grades but it is better for my mental
health! This means that there have been
many events, including on-site excursions! I
think many of these changes have caused an
error in my head at some point, but hope-
fully, this is the last time that Covid related
brain errors occur to me!

Buixcie announcement 2022
The next destination for Buixie was an-
nounced, this year we will be going to
France! The announcement was held in
a GatherTown environment where you
could join in groups. Each group got gro-
ceries to cook a typical meal from a cer-
tain country. When the meal was cooked

it was announced with a brilliant video that
France will be our next destination. We are
scheduled to go to Paris, Marseille, and Iter.

Ice skating with Francken
As it was winter, which makes people want
to go ice skating, we decided to do just that!
We got a nice clinic from G.S.S.V. TJAS,
the sports association for ice skating. We
were taught different techniques, which
we could then try out on our own on the
ice. In the end, it was time to do some

8

organized. This was at Cafe Eureka with
our lovely bartender Ricardo! The theme
was announced by a very long video, the
theme of the next symposium will be ‘Go
with the Flow’! I am sure there will be some
nice talks on fluid mechanics, where this
knowledge may be applied after the sym-
posium.

H-GMA
This GMA was also on campus after having
held GMA’s online or at different locations
for a while. While the board presented all
the important stuff, the members tried to
distract them by writing tons of motions.
Discussions about what can and cannot
touch the flag, whether the Polycon could
see you, or what food you should order
were a few amongst more important dis-
cussions. But in the end, it was a successful
GMA.

Francken’s got talent
Fraccie was curious about how talented
our Mooie gekken are, especially in the
field of music. While completing different
challenges the most talented participants
could be found. These challenges included
guessing reverse played songs, figuring out
text that had been through google trans-
late a lot, and a category where only the
start of songs could be heard and had to
be guessed. In the end the most talented
Franckenmembers turned out to be our
Chair Ian together with Eelco who got a
great price!

matches against each other, I am not very
proud to say that as a Frisian person I lost
against a non-Frisian person. Other people
of course got to show their skills in this part
which was nice to see.

Thales excursion
The first on-site excursion after all the
lockdowns finally happened! By train and
bus, 15 Franckenmembers traveled all the
way to Hengelo where they got to see a
company in real life. They first got a general
presentation about Thales in general and
about the radar systems that they develop.
After a nice lunch, they got a tour of the
design and assembly of the radar systems.
After that, they also got to see some things
that are developed for the army. Last but
not least they got an in-depth presentation
on how radar systems work. When they
got they were treated to a nice pizza.

Sympcie announcement 2022
As it was time to announce the theme of
the upcoming symposium, a nice borrel was

9New of the Association

curious about what this entails, we invited
him to give a lecture about his research.
While enjoying snacks and drinks we found
out that next to his very interesting re-
search, Ralf also thinks that there should be
more emojis used in lecture slides. After
his compelling lecture, there was of course
a borrel in our members room. We were
about as disappointed in his height as in his
drinking abilities, but these things might be
correlated.

Belsimpel Inhouse day
Our second real-life excursion was a bit
closer to home, right in the center of Gro-
ningen. We visited the main building of
Belsimpel where they showed us why their
phone company could also be considered a
tech company. After they presented the ins
and outs of their company we got to work
on a data science case, where we could
see what a job a Belsimpel might look like.
When we were done we got free pizza,
drinks, and a great goodie bag followed by a
nice tour through the whole building.

‘Back to the 80s’ with Sjaarcie
As you know, one of the two jobs of Sjaar-
cie is to host an epic party! I think they were
pretty successful in doing so, as almost the
whole basement of Club Kiwi was filled by
(mostly) sjaars. Everyone was dressed up
in their prettiest 80s outfit and could show
off their moves on the floor or even on
the pole. Our kalashnicup skills were also
tested during some fun games, let’s just say
I was not very lucky.

Francken Friday Lecture from Ralf Mac-
kembach
Yes, you heard it right, the boy that won the
Junior Eurovision song contest grew up to
do a PhD in nuclear fusion! As we are very

By Jelle Bor

Errors that
every physicist
should like

Theorist

10

Theoretical physics and applied physics
are often quite different diciplines,

however we both encounter errors often.
Did you know there is a function for that?

In statistics, the error function has the follo-
wing interpretation for non-negative values
of x: for a random variable y that is nor-
mally distributed with mean 0 and standard
deviation 1/√2, erf(x) is the probability
that y falls in the range [-x,x]. The error
function is antisymmetric, erf(-x)=-erf(x),
and erf(0)=0 and erf(∞)=1.

Some people like errors, others don’t; this
reminds me of the AIVD christmas puzzle.
Can you solve this integral for me without

using a computer?

Please email you answer to jel... and you
can ...

Damn it, looks like my text got stuck - “Quit
kernel”

The name error function and its abbrevia-
tion erf were proposed in 1871 by Glaisher
on account of its connection with the theo-
ry of Probability, and notably the theory of
Errors. Gaussian functions are often used
to represent the probability density func-
tion of a normally distributed random va-
riable with expected value μ and variance
σ. Then the Gaussian becomes of the well-

11Francken Vrij 26.2

specific formulas. Have fun.

Now, let’s just quickly look at the worst
case of errors: errors which unfortunately
give the right answer, so you don’t know
that you did something wrong (hopefully
you see). Here’s an example:

As these are fun, a few more:

Personally, I often encounter errors when
programming, which is yet another form
of errors and probably the most annoying
one. Whether you use Python, Mathema-
tica, Matlab, Fortran, etc. or even object
oriented like C: it all comes down to con-
tinuously solving errors. Hè isn’t there a
function for that? - No, just Google it.

It seems that I still need some debugging to
do for this article...

known form:

Glaisher calculated the chance of an error
lying between p and q as:

The error and the complementary error
function, erfc(x)=1 - erf(x), occur for
example in solutions of the heat equation
when boundary conditions are given by the
Heaviside step function.

... Error: could not found Heaviside step
function, define new variables accordingly...

Besides errors in general, another problem
is propagation of errors, i.e. something has
an error and you just plug it in another
function. Luckily, I am a theorist and do not
come across this often, but you should all
know how to handle such situations. Do
you remember the variance formula, ne-
glecting correlations or assuming indepen-
dent variables,

where σƒ represents the standard deviation
of the function f, σx represents the standard
deviation of x, σy represents the standard
deviation of y, and so forth. This formula
is commonly used among engineers and
experimental scientists to calculate error
propagation, but one can also just open
your Physics Lab 1 reader to look it up for

By Jasper Pluimers

Life after
Francken

Life after Francken

12

While engineers are content with a
reasonable error that fits the re-

quirements of the assignment, we theorists
like to do everything exact. This does not
me... Wait a second, wrong column. It has
been a while since I wrote something for
the Francken Vrij, you can remember me
from my time in the editorial board or, later,
as the theorist. As this is probably the last
time the Francken Vrij committee had to
remind me of the deadline 8 times over a
month, please enjoy my Life after Francken.
From the day I started studying until about
a year before I left Groningen I thought I
would stay a theorist forever. I often said
things like: “I prefer to think in N dimensi-
ons” and “Real stuff is boring”. My opinion
on this started to change a bit when I was
writing my master thesis and I discovered I
did not really enjoy the academic research

itself, I just really enjoyed learning new
things. So what do you do if you ignored
all career events during your studies like a
good physicist? You go to lunch lectures for
the content instead of the lunch. It did not
take a long time before Jasper Compaijen,
also a former theorist, came to Groningen
to tell us about the company he was wor-
king for: Nedap. At Nedap retail he was
working on electronic anti theft systems
that works with RFID and they also have a
software development traineeship that tar-
gets beta graduates. As I used programming
as an excuse to not write my thesis all the
time I thought: “Why not?”.

13Francken Vrij 26.2

illogical way (it really is you who is illogical).
You will notice this the next year when one
of your fellow students asks if you still have
your programs and you answer with: “yes,
but...”. Someone named Mark will tell you
that you have to commit to learn Git to do
all version management and that if you use
floating windows on your PC you are a lo-
ser and you ignore it.

If you did not totally hate this experience
there is a good chance you will revisit pro-
gramming with a bit more care. Maybe the-
re is some privacy invading tracking device
you want to install in the Franckenroom
or maybe you have to write something for
your thesis. You won’t be in Groningen fo-
rever so you bear some responsibility for
others right now, every time you write
some code, you have to think: “If someone
sends me a message saying my thing broke,
can I understand what I tried to do and
help fix it”. There are some more complex
concepts you get familiar with like classes,
objects and tests. Someone named Mark
will still tell you to use Git for your ver-
sion management and you might check it
out, but you do not really understand what
you are doing and why it would be useful.
At this stage you start learning faster and
faster, which is fun. You will learn to read
documentation, check out some program-
ming blogs and decide that either object
oriented or functional programming is the
best thing. Ultimately you start understand
more, but question even more than that.

Software Development
During this traineeship you follow Compu-
ter Science lectures at the UT in Enschede
and you start working at the same time. I
like the idea of it because contrary to some
other traineeships you actually follow lectu-
res at a university and you get a long time
(1.5 years) to actually learn stuff. I don’t
want to make this a recruitment piece, so
if you have any questions about this please
send me a message.

While you touch some programming
during your studies I discovered there are
roughly three levels of programming. First
of there is the first contact you make with
programming during your studies. It might
be in Matlab, Mathematica or if you are
lucky in python. The focus is on either pas-
sing the programming assignment or maybe
writing something that helps you with ano-
ther course. Most scripts you write will be
so messy you won’t even know what the
variables were when the student assistant
asks about them in the next tutorial. The-
re is at least a nested loop of 8 levels and
every time you run the program you cross
your fingers it does not crash. The advan-
tage of this stage of programming is that it
is quick and the responsibility is low. It only
has to run until it gets graded and if you for-
got about it in a month nobody will bother
you. The disadvantage is the somewhat
slow learning process, the error messages
won’t make a lot of sense yet and some-
times the computer seems to do stuff in an

14

ked through this anti theft system multiple
times in their lives, for example at the en-
trance of a Decathlon or H&M store. We
designed all hardware in-house and the
team that I am part of is responsible for all
firmware that runs on that hardware. This
firmware varies from some high level code
in the installation wizard that we made to

For some people the journey will end here
and that is fine. A lot of DIY projects can
lie ahead of them and it will prove to be a
useful skill your whole life. The next step is
when you want to (or have to) write code
with others and used by others, this is when
programming turns into software develop-
ment. A lot of effort goes into making sure
the software you write can still be read and
understood by colleagues in 10 years. It is
not enough anymore to know yourself that
the program is working, you will have to
prove it by writing tests for your code. De-
signing and writing documentation for the
programs that you build will take at least as
much time as the programming itself which
can be a bit tiring. When you look back at
this code in a few years you will appreciate
the thought you put into the choices that
you made and you finally understand why
Mark pushed that Git thing so much. This
is a stage that you will not grow out of and
will never stop learning new things about,
which is why I like it so much.

Nedap
At the Nedap Retail we mostly work with
RFID tags in clothing. RFID tags are small
chips hold a unique number and can send
that unique number to you when probed,
similar to the NFC system on your phone.
We use radio waves to both power and
transfer data to and from these RFID tags
and use that for two main propositions: A
stock management system and an anti theft
system. Everyone who reads this has wal-

15Life after Francken

thought Groningen was a pretty remote
place, but Groenlo is on a whole other le-
vel. Luckily due to corona it is getting more
and more common to work from home,
such that I do not have to make the jour-
ney to Groenlo every day. On top of that
I don’t have to miss Francken that much as
Nedap Retail currently employs four mooie
gekken, while not as many as a certain chip-
maker company it has a lot of potential.

The biggest lesson I learned over the past
few years is that even if you think you know
what you want and what you do not want,
trying out something new can make you re-
alize there is a lot more to do and learn. It
turns out that real stuff does not have to be
boring and it can motivate a lot to see the
things you make being used by people all
over the world.

very low level C++ code that handles the
high-throughput observations from the
RFID-reader. Recently we decided to re-
write most of the code in Rust, a fairly new
programming language which promises C
level speeds but has some pretty strict ru-
les in what it allows to compile. This has a
steep learning curve but helps you to write
safer code and completely prevents some
type of bugs from appearing! If you would
like to know more about Rust, check out
the website (https://www.rust-lang.org/) or
send me a message.

Luckily physics is not completely absent
from my life, as there are quite some chal-
lenges left in optimizing these anti theft
gates. It is easy to detect (almost) all tags,
but it is quite hard to only observe the tags
that move outside and not the once that
are just close to the entrance. Just like in
Astronomy you have to separate the things
you want to observe from the noise, but
unlike Astronomy the length of our wa-
velengths are not that different from the
distance to the targets. Retail environments
are full of excellent radio reflectors and ab-
sorbers, some inanimate like metal plating
on walls, but also animate ones like custo-
mers. This combination of Physics and Soft-
ware Development will keep me busy for a
long time to come.

One of the disadvantages of finding a job is
that you will have to move within reasona-
ble distance of the company as well. I always

Figure 1: Groenlo, famous because of the slag
om grolle and as the birthplace of Grolsch

https://www.rust-lang.org/

By Bradley Spronk

Comic
Comic

16

By Robbert Scholtens

Crossover

17Francken Vrij 26.2

Data is good; data is right; data ... is life.
But corrupted data certainly is none

of these things. Unfortunately, we live in a
world where data is corrupted all the time,
be it due to transmission loss, spontaneous
electron flips, or even cosmic rays. If unable
to handle the inevitable corruption of data,
pretty much all of our digital advancements
would be moot - highly inconvenient, if you
ask me. So, how can we handle corruptions
like these?

To give you a flavor of coding theory, which
is the mathematical discipline concerned
with this handling, I’ve divided this article
into two parts. In the rst part, I will treat an
example adapted from Cecilia Salgado’s re-
cent talk for a very specic setting, and in the
second I introduce the proper terminology
and present a generally applicable result.

A spirited example
The setting is that you wish to order one of
eight brands of beer from your local pub.
But since the barman is particularly stub-
born, you have to submit your order as an
n-bit message, from which he should be
able to determine which beer you want.

(Also not unimportantly, you can tell him
beforehand how he should make his deter-
mination.)
Initially you might just submit the 3-bit la-
bel belonging to your beer brand of choice
-message 1 in Table 1- but this would not
be wise. Namely, if along the way one of
the bits is flipped, the barman will receive at
least 3 bits (for there are 8 = 23 choices),
the barman will give you the wrong beer.

A different tactic would be to duplicate
your message, sending your order “twice,”
effectively. However, again you have the
problem you confuse the barman if one
bit is flipped along the way: if he receives
for instance 010 011, did you order Dors
or Jupiler? He’s got no way to tell, and so

Robbert Scholtens FranckenVrij piece

Data is good; data is right; data ... is life. But corrupted data certainly is
none of these things. Unfortunately, we live in a world where data is corrupted
all the time, be it due to transmission loss, spontaneous electron flips, or even
cosmic rays. If unable to handle the inevitable corruption of data, pretty
much all of our digital advancements would be moot—highly inconvenient, if
you ask me. So, how can we handle corruptions like these?

To give you a flavor of coding theory, which is the mathematical discipline concerned
with this handling, I’ve divided this article into two parts. In the first part, I will treat
an example adapted from Cecilia Salgado’s recent talk for a very specific setting, and in
the second I introduce the proper terminology and present a generally applicable result.

A spirited example

The setting is that you wish to order one of eight brands of beer from your local pub.
But since the barman is particularly stubborn, you have to submit your order as an n-bit
message, from which he should be able to determine which beer you want. (Also not
unimportantly, you can tell him beforehand how he should make his determination.)

Brand Label Msg. v1 Msg. v2 Msg. v3
Hertog-Jan 000 000 000 000 000 000
Heineken 001 001 001 001 001 011
Dors 010 010 010 010 010 110
Jupiler 011 011 011 011 011 101
Amstel 100 100 100 100 100 101
Grolsch 101 101 101 101 101 110
De Klok 110 110 110 110 110 011
Bavaria 111 111 111 111 111 000

Table 1: Table of beer brands, with associated labels and messages.

Initially you might just submit the 3-bit label belonging to your beer brand of choice—
message 1 in Table 1—but this would not be wise. Namely, if along the way one of the
bits is flipped, the barman will receive a different message than you intended. And since
you need to send at least 3 bits (for there are 8 = 23 choices), the barman will give you
the wrong beer.

A different tactic would be to duplicate your message, sending your order “twice,”
effectively. However, again you have the problem you confuse the barman if one bit is
flipped along the way: if he receives for instance 010 011, did you order Dors or Jupiler?
He’s got no way to tell, and so you have 50% chance of getting the beer you actually
want. We’re not really getting places ...

Two observations at this juncture: i) we increased the amount of information sent (six
instead of three “strictly necessary” bits), but also ii) we increased the robustness of our
transmission (50% of getting the correct beer with one bitflip, instead of 0%). Keep these
observations in the back of your mind; they’ll be made concrete later.

1

Figure 1: Table of beer brands, with
associated labels and messages.

18

which differs from the order in a single pla-
ce: Grolsch. As such, the barman concludes
that that was the beer you actually intended
to order, and gives you your refreshing be-
verage. Amazing!

Okay, this was obviously a very playful
example, but it does exemplify a potential
avenue for research. This is what is done in
the mathematical discipline of coding theory,
and it is big business due to the need for
data robustness with which I introduced
this article.

The theoretical bit
It would be a shame not to give you a few
more technical details, to see what’s going
on under the hood and furnish your (in-
evitably piqued) interest. The “sea” of
potential binary messages that could be
received is the state space, and in our case
it had dimension n=6. In contrast, the bi-
nary messages we could send are known
collectively as a code, and for us that had
dimension k=3 (for we needed 3 bits only
in order to characterize the entire mes-
sage, namely the label of the beer, and then
the other three were found from Table 2).

The final concept is that of a “distance”
between messages. The one that is used
most often is the Hamming distance dham,
which simply counts in how many places
the messages are different:
Over the code C we can then nd the mini-
mum distance d between all the messages:

you have 50% chance of getting the beer
you actually want. We’re not really getting
places ...

Two observations at this juncture: i) we
increased the amount of information sent
(six instead of three “strictly necessary”
bits), but also ii) we increased the robust-
ness of our transmission (50% of getting
the correct beer with one bitflip, instead of
0%). Keep these observations in the back of
your mind; they’ll be made concrete later.

Returning to the problem of beer-ordering,
we should be cleverer about how we com-
pose our message. An example of a clever-
er messaging scheme is the last column in 1.
How were these messages formed? We
use the XOR operator, and follow the
guide in Table 2. The bits added in this way
are known as parity bits. The beautiful thing
about this construction is that whenever a
message is now received, and one bitflip
has occurred, we still receive the beer we
ordered with 100% certainty!

Short of giving you a formal proof of this
fact, let a proof by example suffice. Suppo-
se you wish to order Grolsch, so you send
the message 101 110, which is received by
the barman as 111 100. Since this received
message does not correlate directly with a
beer, the barman concludes a bitflip must
have occurred. Upon comparison to
the valid messages -the last column in
Table 1- the barman sees there is only one

Robbert Scholtens FranckenVrij piece

Returning to the problem of beer-ordering, we should be cleverer about how we com-
pose our message. An example of a cleverer messaging scheme is the last column in 1.
How were these messages formed? We use the XOR operator ⊕, and follow the guide in
Table 2. The bits added in this way are known as parity bits. The beautiful thing about

Msg. v3
Beer label bit #4 bit #5 bit #6
b1 b2 b3 b1 ⊕ b2 b1 ⊕ b3 b2 ⊕ b3

Table 2: Construction of message 3 in Table 1 (b1,2,3 = 0 or 1).

this construction is that whenever a message is now received, and one bitflip has occurred,
we still receive the beer we ordered with 100% certainty!

Short of giving you a formal proof of this fact, let a proof by example suffice. Suppose
you wish to order Grolsch, so you send the message 101 110, which is received by the
barman as 111 100. Since this received message does not correlate directly with a beer, the
barman concludes a bitflip must have occurred. Upon comparison to the valid messages—
the last column in Table 1—the barman sees there is only one which differs from the order
in a single place: Grolsch. As such, the barman concludes that that was the beer you
actually intended to order, and gives you your refreshing beverage. Amazing!

Okay, this was obviously a very playful example, but it does exemplify a potential
avenue for research. This is what is done in the mathematical discipline of coding theory,
and it is big business due to the need for data robustness with which I introduced this
article.

The theoretical bit

It would be a shame not to give you a few more technical details, to see what’s going
on under the hood and furnish your (inevitably piqued) interest. The “sea” of potential
binary messages that could be received is the state space, and in our case it had dimension
n = 6. In contrast, the binary messages we could send are known collectively as a code,
and for us that had dimension k = 3 (for we needed 3 bits only in order to characterize
the entire message, namely the label of the beer, and then the other three were found
from Table 2).

The final concept is that of a “distance” between messages. The one that is used
most often is the Hamming distance dham, which simply counts in how many places the
messages are different:

dham(x,y) =
∑
j

xj ⊕ yj. (1)

Over the code C we can then find the minimum distance d between all the messages:

d := min
c1,c2∈C;c1 �=c2

dham(c1, c2) (2)

In our case, it can be verified that the minimum distance d = 3. This means that any
element of our code differs from any other element in at least three places.

2

19Crossover

would also have been allowed. That such a
more optimal code exists is not guaranteed,
but I leave it as an exercise to the reader to
either design a code that has n=5 or d=4,

or show that such a code does not exist!
	
Noteworthy also is that in the limit of large
messages, n/d → 1+, so theoretically most of
our sent message could be corrupted and
we could still recover the information we
wanted to send. This would work greatly in
channels that are highly unreliable and only
let a little bit of the actual message through.

Some concluding words
As you can imagine, I’ve only been able to
scratch the surface of error detection/cor-
rection, which is even but one subfield of
coding theory. Nevertheless, I hope that
this has given you a small taste of the power
that mathematics has in terms of making
our information-driven world robust and
reliable. I’ve also included some material for
further reading, but I would especially high-
ly recommend the video by 3Blue1Brown2
as a good introduction to the field!

References
1. Wikipedia, Reed-Solomon error correction, https://en.wikipedia.
org/wiki/ Reed%E2%80%93Solomon_error_correction
2. Grant Sanderson, How to send a self-correcting message (Ham-
ming codes) (2020), https://www.youtube.com/watch?v=X8jsijhllIA&
abchannel=3Blue1Brown
3. Guruswami et al, Essential Coding Theory (2022), https://cse.buf-
falo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf
4. Henk van Tilborg, Coding Theory: a rst course, https://www.win.
tue.nl/~henkvt/images/CODING.pdf

In our case, it can be veried that the mini-
mum distance d = 3. This means that any
element of our code diers from any other
element in at least three places.

Evidently, we would want to get the most
amount of data robustness for the least
amount of additional bits needed. That
is to say, we would like d to be as large
and n to be as small as possible: d regu-
lates roughly how many bitflips we can
handle, and n (or rather, n-k) how much
additional information/communication

is added on top of the “necessary” k.
As you can imagine, these three quantities

are interrelated in such a way as to regulate
their sizes. The inequality is known as the
Singleton bound4, given by
So you see, we can’t get arbitrarily large ro-
bustness with arbitrarily small sizes: to im-
prove one, there is a cost in the other. This
we saw in action in during the example: with
the addition of three bits, we were able to
make a more robust message than without
them. Furthermore, in our example above
n=6 and k=d=3, so the inequality 3≤6-
3+1=4 is fulfilled-phew! However, this also
suggests that we could’ve potentially de-
signed a better code: either d=4 or n=5

Robbert Scholtens FranckenVrij piece

Returning to the problem of beer-ordering, we should be cleverer about how we com-
pose our message. An example of a cleverer messaging scheme is the last column in 1.
How were these messages formed? We use the XOR operator ⊕, and follow the guide in
Table 2. The bits added in this way are known as parity bits. The beautiful thing about

Msg. v3
Beer label bit #4 bit #5 bit #6
b1 b2 b3 b1 ⊕ b2 b1 ⊕ b3 b2 ⊕ b3

Table 2: Construction of message 3 in Table 1 (b1,2,3 = 0 or 1).

this construction is that whenever a message is now received, and one bitflip has occurred,
we still receive the beer we ordered with 100% certainty!

Short of giving you a formal proof of this fact, let a proof by example suffice. Suppose
you wish to order Grolsch, so you send the message 101 110, which is received by the
barman as 111 100. Since this received message does not correlate directly with a beer, the
barman concludes a bitflip must have occurred. Upon comparison to the valid messages—
the last column in Table 1—the barman sees there is only one which differs from the order
in a single place: Grolsch. As such, the barman concludes that that was the beer you
actually intended to order, and gives you your refreshing beverage. Amazing!

Okay, this was obviously a very playful example, but it does exemplify a potential
avenue for research. This is what is done in the mathematical discipline of coding theory,
and it is big business due to the need for data robustness with which I introduced this
article.

The theoretical bit

It would be a shame not to give you a few more technical details, to see what’s going
on under the hood and furnish your (inevitably piqued) interest. The “sea” of potential
binary messages that could be received is the state space, and in our case it had dimension
n = 6. In contrast, the binary messages we could send are known collectively as a code,
and for us that had dimension k = 3 (for we needed 3 bits only in order to characterize
the entire message, namely the label of the beer, and then the other three were found
from Table 2).

The final concept is that of a “distance” between messages. The one that is used
most often is the Hamming distance dham, which simply counts in how many places the
messages are different:

dham(x,y) =
∑
j

xj ⊕ yj. (1)

Over the code C we can then find the minimum distance d between all the messages:

d := min
c1,c2∈C;c1 �=c2

dham(c1, c2) (2)

In our case, it can be verified that the minimum distance d = 3. This means that any
element of our code differs from any other element in at least three places.

2

Robbert Scholtens FranckenVrij piece

Returning to the problem of beer-ordering, we should be cleverer about how we com-
pose our message. An example of a cleverer messaging scheme is the last column in 1.
How were these messages formed? We use the XOR operator ⊕, and follow the guide in
Table 2. The bits added in this way are known as parity bits. The beautiful thing about

Msg. v3
Beer label bit #4 bit #5 bit #6
b1 b2 b3 b1 ⊕ b2 b1 ⊕ b3 b2 ⊕ b3

Table 2: Construction of message 3 in Table 1 (b1,2,3 = 0 or 1).

this construction is that whenever a message is now received, and one bitflip has occurred,
we still receive the beer we ordered with 100% certainty!

Short of giving you a formal proof of this fact, let a proof by example suffice. Suppose
you wish to order Grolsch, so you send the message 101 110, which is received by the
barman as 111 100. Since this received message does not correlate directly with a beer, the
barman concludes a bitflip must have occurred. Upon comparison to the valid messages—
the last column in Table 1—the barman sees there is only one which differs from the order
in a single place: Grolsch. As such, the barman concludes that that was the beer you
actually intended to order, and gives you your refreshing beverage. Amazing!

Okay, this was obviously a very playful example, but it does exemplify a potential
avenue for research. This is what is done in the mathematical discipline of coding theory,
and it is big business due to the need for data robustness with which I introduced this
article.

The theoretical bit

It would be a shame not to give you a few more technical details, to see what’s going
on under the hood and furnish your (inevitably piqued) interest. The “sea” of potential
binary messages that could be received is the state space, and in our case it had dimension
n = 6. In contrast, the binary messages we could send are known collectively as a code,
and for us that had dimension k = 3 (for we needed 3 bits only in order to characterize
the entire message, namely the label of the beer, and then the other three were found
from Table 2).

The final concept is that of a “distance” between messages. The one that is used
most often is the Hamming distance dham, which simply counts in how many places the
messages are different:

dham(x,y) =
∑
j

xj ⊕ yj. (1)

Over the code C we can then find the minimum distance d between all the messages:

d := min
c1,c2∈C;c1 �=c2

dham(c1, c2) (2)

In our case, it can be verified that the minimum distance d = 3. This means that any
element of our code differs from any other element in at least three places.

2

Robbert Scholtens FranckenVrij piece

Evidently, we would want to get the most amount of data robustness for the least
amount of additional bits needed. That is to say, we would like d to be as large and n to
be as small as possible: d regulates roughly how many bitflips we can handle, and n (or
rather, n − k) how much additional information/communication is added on top of the
“necessary” k.

As you can imagine, these three quantities are interrelated in such a way as to regulate
their sizes. The inequality is known as the Singleton bound [4, (2.17)], given by

d ≤ n− k + 1. (3)

So you see, we can’t get arbitrarily large robustness with arbitrarily small sizes: to improve
one, there is a cost in the other. This we saw in action in during the example: with the
addition of three bits, we were able to make a more robust message than without them.
Furthermore, in our example above n = 6 and k = d = 3, so the inequality 3 ≤ 6−3+1 = 4
is fulfilled—phew! However, this also suggests that we could’ve potentially designed a
better code: either d = 4 or n = 5 would also have been allowed. That such a more
optimal code exists is not guaranteed, but I leave it as an exercise to the reader to either
design a code that has n = 5 or d = 4, or show that such a code does not exist!

Noteworthy also is that in the limit of large messages, n/d → 1+, so theoretically
most of our sent message could be corrupted and we could still recover the information
we wanted to send. This would work greatly in channels that are highly unreliable and
only let a little bit of the actual message through.

Some concluding words

As you can imagine, I’ve only been able to scratch the surface of error detection/correction,
which is even but one subfield of coding theory. Nevertheless, I hope that this has given
you a small taste of the power that mathematics has in terms of making our information-
driven world robust and reliable. I’ve also included some material for further reading, but
I would especially highly recommend the video by 3Blue1Brown [2] as a good introduction
to the field!

References

[1] Wikipedia, Reed-Solomon error correction, https://en.wikipedia.org/wiki/

Reed%E2%80%93Solomon_error_correction (accessed 14-4-2022)

[2] Grant Sanderson, How to send a self-correcting message (Hamming codes) (2020),
https://www.youtube.com/watch?v=X8jsijhllIA&ab_channel=3Blue1Brown (ac-
cessed 14-4-2022)

[3] Guruswami et al, Essential Coding Theory (2022), https://cse.buffalo.edu/

faculty/atri/courses/coding-theory/book/web-coding-book.pdf (accessed
14-4-2022)

3

By Antonija Grubišić Čabo and Petra Rudolf

Inside View

20

In our university lectures we most of-
ten deal with perfect, infinite crystals. In

reality, however, no material is (obviously)
infinite, or perfect. Real materials always
host some kind of defects, and the nature
and amount of defects will differently affect
diverse properties of the material. Some
defects occur naturally in the crystal, but
sometimes we also introduce defects on
purpose to obtain a specific property in a
material. For example, transistors in our
computer chips are built of p-doped and n-
doped silicon but this doping is man-made
through introduction of boron or phosp-
horous impurities in pure, clean silicon that
is an intrinsic semiconductor (“neutral” in
doping). We can define defects in materi-
als based on their geometry and shape into
0D, 1D, 2D and 3D defects. 0D defects are
or point defects can be vacancies (missing

atoms) or impurities (as in the case of p-
and n-doped silicon). Line defects are 1D
defects that come in the form of line and
screw dislocations. In real materials, we ty-
pically have a mix of the two. External surf-
ace or 2D defects as the name says appear
on the surface of the crystal. This most of-
ten happens because atoms on the surface
have very different environment from the
atoms in the bulk of the crystal, and in or-
der to minimize energy they create surface
reconstructions (change crystalline stacking
on the surface) or form unsaturated bonds.
And lastly, 3D defects propagate through
the whole volume of the crystal and can be
stacking faults, voids, crystal twins or grain
boundaries, to name a few. This was all for
our “regular” 3D materials, but what hap-
pens when we look at 2D materials and
role of defects?

Franken Vrij 26.2 21

graphene is a pure surface.
I) A very special and cool effect can be
achieved by binding hydrogen atoms to
every second carbon atoms in graphene-it
can make graphene magnetic1. Now why is
this special? Well, neither carbon that ma-
kes graphene, nor hydrogen are magnetic
materials, but if we combine them in this
particular way they form a magnetic sys-
tem. This is not something that you can
observe in 3D materials!
II) If we grow a periodic lattice of hydrogen
on graphene we can open a band gap in
the electronic structure of graphene-and
band gap is important if we want to have
graphene transistors. Not only that, but
depending whether the hydrogen lattice is
perfect or has defects, i.e. missing hydrogen
structures, the size of the band gap can be
different2.
Both of these examples show how grap-
hene can be improved by defects, so it
might seem that all defects in graphene are
useful - unfortunately this is not the case.
Just as in 3D, defects in 2D materials often
degrade their properties. One of common
defects seen in graphene, especially one
that is grown and not exfoliated, is the pre-
sence of grain boundaries. These are the
borders where grains of graphene of diffe-
rent orientation merge, and in this border
region amount of disorder is relatively high.
As a consequence, this reduces mobility of
charge carriers in graphene, disadvantage-
ous if we want to make graphene electronic
devices, and makes it more likely that diffe-

Defects in 2D Materials
Well, it turns out that defects are even
more important in materials that can be
considered a pure surface! Not only that,
but presence of defects can also have very
different effect compared to their pres-
ence in 3D materials. As an example, we
will present a couple of examples of de-
fects in most famous 2D material – grap-
hene. Graphene, shown in Fig.1, is a single
sheet of graphite, that can be either grown
on a substrate, or exfoliated with a bit of a
help from a regular sticky tape-and is really
a wonder material. Electrons in graphene
have no mass, so they can move really fast,
and graphene itself is a very strong and
elastic material, much stronger than steel.
Now, what can defects do in graphene?
Let’s start by looking into two examples of
surface modification made by hydrogen, as

Figure 1: Scanning tunneling image of atomically
resolved bilayer graphene on SiC showing a perfect
lattice of graphene with no point or line defects.

22

response very significantly but in a limited
range of zinc concentrations4. This has to
do with the complex interplay between
nanostructure, defect formation and con-
sequent ferromagnetism. Sadaf found that
the morphology of the nanostructures va-
ries with zinc concentration and that the
strongest ferromagnetic response comes
from nanostructures with nanoneedles on
their surfaces. This is related to the role of
the surface planes of the nanoneedles in
stabilization of ferromagnetic defects.
Defects are often created when self-as-
sembled monolayers of organic molecules
with a functional group are used as active
layer in devices. This happens for example
for ordered arrays of molecules that switch
conformation when irradiated with light.
We showed recently5 that self-assembled
monolayers with photochromic moiety de-
graded rapidly when switched with light in

rent kinds of atoms and molecules can pass
through graphene-problematic if we want
to use graphene as a sort of a protective
coating3. For this reason, a lot of effort is
invested in developing methods of growing
graphene (and other materials) with as few
defects as possible, but also studies of what
defects actually do-because they are not all
the same-are extremely important.

Defects in Nanostructures
As an example for this kind of defects we
cite part of the work Sadaf Akbar, now lec-
turer for the Physics labs, did for her PhD
project. She studied stannic oxide (SnO2), a
wide band gap semiconductor that exhibits
both relatively high electrical conductivity
and insulator-like transparency in the visible
range and demonstrated how incorporati-
on of a non-magnetic dopant, zinc, in SnO2
nanoparticles enhances the ferromagnetic

Figure 2: Transmission electron microscopy images of SnO2 nanoparticles doped with 4 at.% Zn, which
present nanoneedles on the surface.4

23Inside View

lot about not only the material in question,
but also about defects and what they can
do. Defects can be created for example in
a molecular layer through interaction with
light because photoexcited molecules can
react with water or oxygen in the environ-
ment and this causes detrimental effects in
devices. This makes defects one of more
important topics in studying and making
designer, functional materials.

References
1. H. González-Herrero et al., Science 352, 6284 (2016)
2. J. Jørgensen, Antonija Grubišić-Čabo et al., ACS Nano 10, 12
(2016)
3. L. Kyhl, S. F. Nielsen, Antonija Grubišić-Čabo et al., Faraday
Discussion (2015)
4. S. Akbar, S. K. Hasanain, O.Ivashenko, M. V. Dutka, N. Akhtar,
J.Th.M. De Hosson and P. Rudolf “, RSC Advances 9, 4082 (2019)
5. S. Kumar, S. Soni, W. Danowski, I. Leach, S. Faraji, B. L. Feringa, P.
Rudolf, R. C. Chiechi , The Journal of Physical Chemistry C, 123(42),
25908-25914 (2019)

an environment with even only small rela-
tively humidity while under dry conditions
no chemical degradation is observed and
the switching process is reversible over at
least 100 cycles. In fact, a photoexcited mo-
lecule can be reactive towards its environ-
ment even when the same molecule in its
ground state is inert. This can cause fatigue
and irreversibility of a device. Our results
highlight that by creating the right conditi-
ons in which photochromic compounds are
utilized the device-relevant functionality of
surface-bound switches can be preserved.

Concluding remarks
No material is perfect as in our textbooks,
as all real materials host different kinds of
defects in their lattice. What defects do in
the material and how they affect it depends
on a lot of things, mainly on type of a de-
fect, quantity, but also on the kind of ma-
terial as well. Defects in 3D materials are
(occasionally) very different form defects
in 2D materials and defects on nano-scale
as quantum effects are more important
on small length scales. Not all defects are
detrimental, and sometimes we want to
artificially introduce defects to change
material in a way that makes it more use-
ful for us. We’ve used this extensively in
silicon industry, but also, for example, in
jewels industry-coloured diamonds are just
“regular” diamonds with impurities. Most
importantly, if you want to tailor material
for a specific purpose, you need to know a

By Gertjan Pomstra

Puzzle
Puzzel

24

Fixing the coffee machine. Every mor-
ning you need your cup of coffee to get

your day started and thus you power up
your favourite coffee machine. But it has
got issues and exactly today it refuses to
provide you with the fuel you desperately
need. So, you decided to turn the thing in-
side out. As a real TN’er you unscrew the
panel, remove all the components of its
circuit board, check conductivity with your
multimeter and fix a broken wire. That
should do the job.

Before you can celebrate with a scalding

hot cup of sludge, you must reassemble
the coffee machine again. In your enthusi-
asm of fixing the wiring, you have forgot-
ten in which slot every component should
be placed. To make matters even worse,
you don’t know which two keys you need
to reset the coffee machine. Great! Luckily,
you have found two pieces of paper un-
derneath the coffee machine which guide
you in this unnecessary complex process.
Weld the components in the correct slots
and reset the coffee machine with the right
keys so you can finally get your day started.
Good luck!

Figure 1: The components and two pieces of paper.

25Francken Vrij 26.2

Figure 2: The dreadful coffee machine.

26

The solutions to last edition’s puzzle:

By Nea Isla Kauko & Luc Cronin

It’s all in your head!

27Francken Vrij 26.2

Scribent

Picture this: it is 1:30am and we’re crying
tears of joy over FaceTime. What had

happened? We finally passed all test cases
on Themis, our screens turn green and
our eyelids are heavy from the hours spent
debugging that one Algorithms and Data
Structures lab assignment.

When we logged out of the gather.town
tutorial space, our task seemed doable and
our code was giving correct output most
of the time. After some final fixes and lay-
out changes, we compiled the program on
our machine and used all available test cases
to check our output and it was correct. So,
the intuitive next step was to upload the
solution to Themis and be done for the day,
but Themis rejected our submission!

A great amount of professional debugging,
including sarcastic print-statements and

(un-)commenting later, we still couldn’t
find our error and at 11:30pm we emailed
our TA. Around half an hour later, we get
a reply (shoutout Ben!) and he fixed the
makefile and told us to try again. Sadly, this
didn’t help our problem, which we were
still pondering.
As a last resort, we went through the
header file of our project, and there it was!
We had absentmindedly commented out
one of the functions in the list. Somehow, it
didn’t affect the compilation on our laptops,
but was a problem for Themis. Hours of
dissecting our code all due to two forward
slashes…

We slapped our working solution with the
updated header file into Themis, and with
great relief watched the bars turn green
and satisfied. A joyful teary glance at the
clock revealed 1:30am - bedtime.

Schut.com

Schut Geometrical Metrology (Schut Geometrische Meettechniek
bv) is an international organization, founded in 1949, with five offices
throughout Europe, specialized in the development, production, sales
and service of precision measuring instruments and systems.

Products developed and produced by Schut Geometrical Metrology
are the 3D CNC coordinate measuring machines DeMeet in video as
well as multi-sensor model. The DeMeet 3D CNC measuring machines
provide automatic, user-independent quality control with measuring
results traceable to the international length standard.

Because we are expanding, we are continuously looking for
enthusiastic team players to strengthen our company. If you want to
work in a company that values people with ideas and initiative, with a
transparent company structure and informal, no-nonsense company
culture, then Schut Geometrical Metrology is interested to get in touch
with you. Employees working in our technical sales, software support
and development departments have an academic background.

For various departments we are looking for enthusiastic colleagues
with a flexible attitude. The job is an interesting mix of working with
people and advanced technology.

We are interested to get in touch with:
•	 Software Developers (C++)
•	 Technical and Software Support Engineers
•	 Mechatronics Engineers
•	 Technical Sales Engineers
•	 Service Engineers

You are welcome for an exploratory conversation, an interview or
consultation about the possibilities of an internship or graduation project.

You can contact us by e-mail Jobs@Schut.com (“job” as subject) or send
your resume and letter to Schut Geometrical Metrology, Duinkerkenstraat
21, 9723 BN Groningen, The Netherlands.

Jobs.Schut.com

Please have a look at our vacancies on our website:

18
9.

77
8-

20
18

02

Universiteit.indd 2 2/23/2018 10:10:03 AM

